MONTHWISE SYLLABUS CLASS XI

SUBJECT – PHYSICS (042)

MONTH	SYLLABUS
APRIL	UNIT1: PHYSICAL WORLD AND MEASURENT
	Physics- Scope and excitement; Nature of physical
	laws; Physics, technology and society. Need for
	measurement; Units of measurement; systems of units;
	SI units, fundamental and derived units. Length, mass
	and time measurements; accuracy and precision of
	measuring instruments; significant figures.
	Experiment: To find the volume of a given cylinder
	with the help of Vernier Callipers.
MAY	PHYSICAL WORLD AND MEASUREMENT
	Dimensions of physical quantities, dimensional analysis
	and its applications.
	UNIT II KINFMATICS
	Frame of reference Motion in a straight line: Position-
	time graph speed and velocity
	Uniform and non-uniform motion speed and velocity-
	average and instantaneous velocity Uniformly
	accelerated motion velocity-time graph and position-
	time graph.
	Experiment: To calculate the volume of a given
	beaker with the help of Vernier Callipers.
	KINEMATICS
	Equations for uniformly accelerated motion (graphical
	treatment only).
	Simple introduction to elementary concepts of
	differentiation and integration for describing motion.
	Scalar and vector quantities: vectors, notation, equality
	of Unit vector; Resolution of a vector in a plane –
	rectangular components. Motion in a Plane. Projectile
	motion, circular motion.
	Experiment: To calculate of a given wire by using
	screw Gauge.
	Activity: To make a paper scale of least count 0.2 cm
	and 0.5 cm.
JULY	UNIT III: <u>LAWS OF MOTION</u> Concernt of force Insertio Newton's forct laws force is an
	Concept of force. Inertia, Newton's first law of motion:
	momentum and Newton's second law of motion:
	Impulse: Newton's third law of motion. Law of motion.
	Law of conservation of linear momentum and its
1	applications.

	 Equilibrium of concurrent forces. Static and kinetic friction, laws of friction, rolling friction. Dynamic of uniform circular motion: Centripetal force, examples of circular motion (vehicle on level circular road, vehicle on banked road). Experiment: To calculate the acceleration due to gravity using simple pendulum. Activity: To find atmospheric pressure by using Fortin's Barometer.
AUGUST	 UNIT IV: WORK ENERGY AND POWER Scalar product of vectors. Work done by a constant force and variable force; Kinetic energy, work-energy theorem, power. Potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative force: elastic collisions and elementary idea of inelastic collisions. Experiment: To find the weight of a given body by using parallelogram method. Activity: To verify the conservation law of Energy.
SEPTEMBER	 LUNIT-V MOTION OF SYSTEM OF PARTICLES AND RIID BODIES Centre of mass of a two-particle system, centre of rigid bodies. Momentum conservation and motion centre of mass. Vector product of vectors; moment of a force, torque, angular momentum, conservation of angular momentum with some examples. Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions; Moment of inertia, radius of gyration. Moments of inertia for simple geometrical objects(No derivation). Only statement of parallel and perpendicular axes theorems and their applications. UNIT VI: GRAVITATION Keplar 's laws of planetary motion. The universal law of gravitation. Acceleration due ot gravity and its variation with altitude and depth. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites. Experiment: To calculate the spring constant by using the method of oscillation.

OCTOBER	UNIT VII: PROPERTIES OF BULK MATTER
	Elastic behaviour; stress-strain relationship, Hooke's law,
	Young's modulus, bulk modulus, shear, modulus of
	rigidity.
	Pressure due to a fluid column; Pascal's law and its
	applications (hydraulic lift and hydraulic brakes). Effect
	of gravity on fluid pressure.
	Viscosity, Stokes' law, terminal velocity, Reynold's
	number, streamline and turbulent flow;
	Bernoulli's theorem and its applications.
	Surface energy and surface tension, angle of contact,
	application of surface tension to drops, bubbles and
	capillary action.
	Heat, temperature thermal expansion; specific heat
	capacity – calorimetry; change of state-latent heat.
	Heat transfer – conduction, convection and radiation,
	thermal conductivity, Newton's law of cooling
	Experiment: To study the bending of bimetallic strip
	on heating.
NOVEMBER	UNIT-VIII: THRMODYNAMICS
	Thermal equilibrium and definition of temperature
	(zeroth law of thermodynamics). Heat, work and internal
	energy. First law of thermodynamics.
	Second law of thermodynamics: reversible and
	irreversible processes. Heat engines and refrigerators.
	UNIT IX: KINETIC THEORY OF GASES
	Equation of state of a perfect gas, work done on
	compressing a gas.
	Kinetic theory of gases – assumptions, concept of
	pressure. Kinetic energy and temperature; rms speed of
	gas molecules; degrees of freedom, law of equipartition
	of energy(statement only) and application to specific heat
	capacities of gases; concept of mean free path,
	Avogadro's number.
	Experiment: 10 find the coefficient of viscosity of a
	given iiquia.
DECEMBER	UNIT- X : OSCILLATIONS AND WAVES
DECEMBER	Periodic motion – period, frequency, displacement as a
	function of time. Periodic functions. Simple harmonic
	motion (S.H.M) and its equation; phase; oscillations of
	spring-restoring force and force constant: energy in
	S.H.M. Kinetic and potential energies; simple pendulum-
	derivation of expression for its time period; free and
	forced (damped) oscillations (qualitative ideas only),
	resonance.

	Wave motion. Transversal and longitudinal waves. Displacement relation for a progressive wave Reflection
	of waves, principle of superposition of waves, standing waves in string and organ popes, fundamental mode and harmonics. Beats
	Experiments: 1. To study the relationship between the temperature
	of a hot body and time by plotting a cooling curve. 2. To study the relation between frequency and length of a given wire under constant tension using
	Sonometer.
JANUARY	REVISION